

fischertechnik Robo Interface

KeLib Library Specification

Version FtLib: 1.78
Status as of: 06/20/2011

Knobloch GmbH
Weedgasse 14

D-55234 Erbes-Büdesheim

entwicklung@knobloch-gmbh.de
www.knobloch-gmbh.de

Knobloch KeLib for Windows

 Page 2 of 44 pages

1 Table of contents
1 Table of contents ..2
2 Robo Interface Program ...4
3 PC Interfaces..4

3.1 General...4
3.2 Multiple USB Interfaces on One Computer...5

4 Library for Windows (FtLib) ..6
4.1 Device Handling Function...6

4.1.1 DWORD GetLibVersion (void) ..6
4.1.2 DWORD InitFtLib(void)...7
4.1.3 DWORD CloseFtLib (void) ...7
4.1.4 DWORD IsFtLibInit (void) ...7
4.1.5 DWORD InitFtUsbDeviceList (void)..8
4.1.6 UNIT GetNumFtUsbDevice (void) ..8
4.1.7 FT_HANDLE GetFtUsbDeviceHandle (UCHAR ucDevNr)9
4.1.8 FT_HANDLE GetFtUsbDeviceHandleSerialNr ()..9
4.1.9 DWORD OpenFtUsbDevice (FT_HANDLE hFt) ...9
4.1.10 FT_HANDLE OpenFtCommDevice()..10
4.1.11 DWORD SetFtDeviceCommMode () ..11
4.1.12 DWORD CloseAllFtDevices () ..12
4.1.13 DWORD CloseFtDevice (FT_HANDLE hFt) ...12
4.1.14 DWORD GetFtDeviceTyp (FT_HANDLE hFt) ..12
4.1.15 LPCSTR GetFtSerialNrStrg (FT_HANDLE hFt)..13
4.1.16 DWORD GetFtSerialNr (FT_HANDLE hFt) ..13
4.1.17 LPCSTR GetFtFirmwareStrg (FT_HANDLE hFt)..13
4.1.18 DWORD GetFtFirmware (FT_HANDLE hFt) ..14
4.1.19 LPCSTR GetFtManufacturerStrg (FT_HANDLE hFt)14
4.1.20 LPCSTR GetFtShortNameStrg (UCHAR ucDevNr)......................................14
4.1.21 LPCSTR GetFtLongNameStrg (FT_HANDLE hFt)15
4.1.22 LPCSTR GetFtLibErrorString (DWORD dwErrorCode, DWORD dwTyp).....15
4.1.23 DWORD GetFtDeviceSetting (FT_HANDLE hFt, FT_SETTING *pSet)........15
4.1.24 DWORD SetFtDeviceSetting (FT_HANDLE hFt, FT_SETTING *pSet)16
4.1.25 DWORD SetFtDistanceSensorMode () ..17

4.2 Function for Online Communication ...18
4.2.1 DWORD StartFtTransferArea () ...18
4.2.2 DWORD StartFtTransferAreaWithCommunication ()....................................19
4.2.3 DWORD StopFtTransferArea (FT_HANDLE hFt)...20
4.2.4 FT_TRANSFER_AREA* GetFtTransferAreaAddress (FT_HANDLE hFt)20
4.2.5 DWORD IsFtTransferActiv (FT_HANDLE hFt) ...20
4.2.6 DWORD ResetFtTransfer (FT_HANDLE hFt) ..20

4.3 Function for Message Processing ..21
4.3.1 Serial Messages...21
4.3.2 FtLib Functions...21
4.3.3 Message Reception..22
4.3.4 DWORD SendFtMessage () ...22
4.3.5 DWORD ClearFtMessageBuffer (FT_HANDLE hFt)24

4.4 Function for Data Downloading / Program Control25
4.4.1 DWORD GetFtMemoryLayout () ..25
4.4.2 DWORD DownloadFtProgram () ..27
4.4.3 DWORD StartFtProgram (FT_HANDLE hFt, DWORD dwMemBlock)..........28
4.4.4 DWORD StopFtProgram (FT_HANDLE hFt) ..29
4.4.5 DWORD DeleteFtProgram (FT_HANDLE hFt, DWORD dwMemBlock).......29

Knobloch KeLib for Windows

 Page 3 of 44 pages

4.4.6 DWORD SetFtProgramActiv (FT_HANDLE hFt, DWORD dwMemBlock)30
4.4.7 DWORD GetFtProgramName () ...30
4.4.8 DWORD GetFtMemoryData ()..31
4.4.9 DWORD WriteFtMemoryData () ...32

5 Sequence of USB Functionality for Online Communication..........................33
6 Transfer Area ...34

6.1 Memory Region Design ..34
6.1.1 Memory Layout of the Communication Region...34
6.1.2 Digital Inputs E1-E32..43
6.1.3 Special Inputs...43
6.1.4 Analog Inputs ...43
6.1.5 16-bit Timer ..43
6.1.6 Outputs...44
6.1.7 Operating Mode, Installed Enhancements..44

7 Revision..44

Knobloch KeLib for Windows

 Page 4 of 44 pages

2 Robo Interface Program
Up to three programs per download can be stored in the Robo interface. Program 1 and
program 2 are permanently stored in FLASH memory, a third program can be stored in
RAM. RAM memory is erased when a flash program is started and also when a power
failure to the interface occurs.

The selection of the active program takes place via the program pushbutton. Should this
be active longer than 0.5 seconds, the desired program can be selected. Both program
LEDs for program 1 / 2 illuminate in succession if a program is saved in the respective
memory cells. If a program is stored in RAM, this will be indicated by the illuminated LEDs.
If the memory cells are empty, the respective program cannot be executed.

In order to start or stop the indicated program, the program pushbutton must be briefly
activated (<500ms). The selection, starting, and stopping of programs may also occur via
the interfaces (USB, serial, radio).

3 PC Interfaces

3.1 General
Interface selection on the Robo interface occurs by pressing buttons. After it is turned on,
“AutoScan” mode becomes active. The USB, serial interface, and the radio module (if
available) will be checked to see if data exists. This state is identifiable by the illumination
of the interface light-emitting diodes.

As soon as an interface sends data, the other interfaces are disabled. The active interface
blinks in order to indicate data communication. If no data passes through the active
interface for more than 300ms, AutoScan mode is activated again.

By pressing the “Port” pushbutton, the next operating mode is selected based upon the
following table.

 1. AutoScan USB – Serial - Radio 1)
 2. AutoScan USB - Serial
 3. USB
 4. Serial
 5. IR Direct

1)
This operating mode is only activated if the radio module is installed.

If the Port pushbutton is activated for more than 3 seconds, the interface goes into
“Intelligent Interface Online Mode.” The serial interface then operates with the parameters
9600,n,8,1. The operating mode is displayed by the fast-blinking “COM” light-emitting
diode. In this operating mode, the interface performs like an Intelligent Interface in online
mode. However, no programs can be downloaded. By depressing the Port pushbutton,
AutoScan operating mode is once again activated.

Knobloch KeLib for Windows

 Page 5 of 44 pages

3.2 Multiple USB Interfaces on One Computer

In order to operate multiple interfaces on the USB bus, every interface must initially be
assigned its own serial number. By default, all interfaces are provided with the same serial
number in order to avoid problems during the exchange of interfaces. The Windows
operating system distinguishes identical devices on the basis of their serial numbers. For
“every” serial number, the corresponding driver is then installed. Administrator privileges
are required for this under Windows 2000 / XP.

Thus, all ROBO interfaces and ROBO I/O extensions are provided with the identical serial
number by default. There are no problems as long as only one interface is utilized on one
computer. The computer differentiates the products through their name (ROBO interface,
ROBO I/O extension, and Robo RF DataLink) and by their respective serial numbers.
Thus, a Robo interface and a Robo I/O extension can be operated simultaneously on one
computer without changing the serial number since different products are involved.

But if multiple identical products (e.g., Robo interfaces) are to be operated on one
computer via USB, the serial number of the supplementary interface to be connected to
the computer must first be changed so that it can be differentiated by the computer.

Note: no serial number needs to be changed with a connection via the serial interface on
the computer.

Thus, the interface has stored two serial numbers. Whether the default serial number “1”
or the device serial number “2” programmed by the manufacturer becomes active during
activation of the device can be set via the software.

Changing the serial number can be accomplished via the software FtDiag.exe, RoboPro,
or the function GetFtDeviceSetting(), or SetFtDeviceSetting() of the Ftlib.

In order to change the serial number, only one product may be connected to the USB,
otherwise the computer cannot distinguish it. In FtDiag.exe, after “SCAN USB” and clicking
on the button “USB Device,” invoke the Properties / Setup menu. In this template one can
set the desired serial number that becomes active after the next start.

Warning: if the serial number is changed, the Windows driver may have to be reinstalled
during the activation of the interface. However, administrator privileges are required for this
under Windows 2000 / XP. If one does not have this, one cannot install the driver and thus
could not access the interface via USB. In this case one can depress the PROG
pushbutton during interface activation until the lamp test (“lighting console”) ends during
activation. The interface then utilizes the serial number “1” and is recognized again by the
installed driver (e.g., in order to change the serial number to permitted values).
Note that the serial numbers imprinted on the products are in hexadecimal format!

Even though USB “theoretically” allows up to 127 devices, practice has shown that under
Windows XP (with SP1) running a 3 GHz Pentium 4, only about 4-5 products can be
reliably operated in parallel (i.e., the update time of the TransferArea amounts to a
maximum of 10ms); under Windows 98, it is up to 10 devices. This is due to the fact that
the internal Windows drivers for the motherboard hardware under XP are not optimized for
“real time applications.” Thus, it makes more sense to connect IO extensions to the Robo
Interfaces instead of every product individually to USB.

Knobloch KeLib for Windows

 Page 6 of 44 pages

4 Library for Windows (KeLib / formerly FtLib)
The library supports the fischertechnik USB products (serial and USB interfaces) as well
as the Intelligent Interface on the serial interface.
The library is available in the following versions for Microsoft Visual C++ Studio 6.0:

FtLib_Static_LIBCMT_Release.lib = Multithreaded Static (Linker option: /MT)
Project settings on C/C++ tab under “Code Generation – Runtime Library:” Multithreaded

FtLib_Static_LIBCMTD_Debug.lib = Multithreaded Static Debug (Linker option: /MT d)
Project settings on C/C++ tab under “Code Generation – Runtime Library:” Multithreaded Debug

FtLib_Static_MSVCRT_Release.lib = Multithreaded DLL (Linker option: /MD)
Project settings on C/C++ tab under “Code Generation – Runtime Library:” Multithreaded DLL

FtLib_Static_MSVCRTD_Debug.lib = Multithreaded DLL Debug (Linker option: /MD d)
Project settings on C/C++ tab under “Code Generation – Runtime Library:” Multithreaded DLL Debug

The following functions are also included in the dynamic library FtLib.DLL.

4.1 Device Handling Function

4.1.1 DWORD GetLibVersion (void)
USB: yes
COM: yes
This routine returns the version number of the current library.

Call: ---
Return: Version number 0 0 x y (4 bytes, xy = version X.Y)

Knobloch KeLib for Windows

 Page 7 of 44 pages

4.1.2 DWORD InitFtLib(void)
USB: yes
COM: yes
In order to be able to use the data control for the interface, variables must be initialized
and memory regions are required. This occurs with this routine. It must be called as the
first routine. We recommend making the call directly in the initialization routine of the
application (e.g., OnInitDiaglog() with MFC applications). The function has multithreading
capability so that it can also be invoked at a later time.

Before the conclusion of the application, the counterpart to this routine, “CloseFtLib(void),”
must be called in order to free reserved memory.

Call: ---
Return: Error code
 FTLIB_ERR_SUCCESS no error with Init
 otherwise an error code (see FtLib.h)
e.g.: FTLIB_ERR_LIB_IS_INITIALIZED Library is already initialized
 FTLIB_ERR_USB_NOT_SUPPORTED_FROM_OS
 USB is not supported by the operating system
 (Windows-95 and Windows NT)

4.1.3 DWORD CloseFtLib (void)
USB: yes
COM: yes
This routine should be called at the conclusion of the application. It frees all memory
regions and deletes handles that are still open.

Call: ---
Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)

4.1.4 DWORD IsFtLibInit (void)

USB: yes
COM: yes
This routine returns information as to whether or not InitFtLib() has already been executed.

Call: ---
Return: FTLIB_ERR_LIB_IS_INITIALIZED region already allocated
 FTLIB_ERR_LIB_IS_NOT_INITIALIZED region not yet allocated

Knobloch KeLib for Windows

 Page 8 of 44 pages

4.1.5 DWORD InitFtUsbDeviceList (void)
USB: yes
COM: no
This routine creates a list of currently connected devices and saves device-specific data.
The devices will not be opened. The variable “Device Number” (for GetNumFtUsbDevice())
is also set. The first device in the generated list is addressed with index “0.”

For every RF data link module found on the USB connection, a device type of
"FT_ROBO_RF_DATA_LINK" is saved. This type can be queried with GetFtDeviceTyp ().
Additionally, with an RF data link module a search will be made over radio for Robo
interfaces on the set frequency. For every detected Robo interface, an additional entry will
be created directly in the connection as type "FT_ROBO_IF_OVER_RF.“ Through this
procedure, all eight of the possible interfaces can be activated via radio. However, only
one module can be opened at the same time. Please note that for every detected RF data
link module, this function requires a few seconds in order to find the potential Robo
interfaces. Program execution can thereby be delayed for several seconds.
If a transfer thread is subsequently started upon insertion of the RF data link module, then
FtLib will start the transfer thread for the first detected Robo interface.

Important: The generated list is not sorted. After every call to this function, the detected
devices may be arranged in another sequence (particularly if new devices are connected
in the meantime). Robo interfaces accessible via this module are solely found with a
connection to an RF data link module.

Should there be devices missing during this function call, the function will terminate with an
error.

Call: ---
Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)
e.g.: FTLIB_ERR_SOME_DEVICES_ARE_OPEN

4.1.6 UNIT GetNumFtUsbDevice (void)
USB: yes
COM: no
This routine returns the number of connected fischertechnik USB devices. This number is
set by invoking InitFtUsbDeviceList().

Call: ---
Return: UINT Number of detected devices

Knobloch KeLib for Windows

 Page 9 of 44 pages

4.1.7 FT_HANDLE GetFtUsbDeviceHandle (UCHAR ucDevNr)
USB: yes
COM: no
This routine returns a handle to the desired USB device in the table generated by
InitFtUsbDeviceList(). The first device is addressed with index “0.” Important: The list
generated by InitFtUsbDeviceList is not sorted. After every call to this function, the
detected devices may be arranged in another sequence. Access to the device or its data
occurs via this handle.

Call: UCHAR ucDevNr Index in the USB device table
Return: FT_HANDLE Handle of the USB device
 With errors, NULL is returned

4.1.8 FT_HANDLE GetFtUsbDeviceHandleSerialNr (DWORD dwSN,
 DWORD dwTyp)
USB: yes
COM: no
This routine returns a handle to the USB device if it exists in the list generated by
InitFtUsbDeviceList() through the device specified by the serial number. Since a serial
number can occur multiple times for various devices, the variable “dwTyp” specifies the
device class. The parameter type “FT_AUTO_TYPE” passes the handle of the first
detected device with the desired serial number.

Call: DWORD dwSN Serial number of the USB device
 DWORD dwTyp Type of the device to be opened
 FT_AUTO_TYPE Returns the first device with this SN
 FT_ROBO_IF_USB Robo interface at the USB port
 FT_ROBO_IO_EXTENSION Robo I/O extension
 FT_ROBO_RF_DATA_LINK Robo RF data link
Return: FT_HANDLE Handle of the USB device
 In the event of an error, NULL is returned

4.1.9 DWORD OpenFtUsbDevice (FT_HANDLE hFt)
USB: yes
COM: no
This routine opens various channels to the connected device according to DeviceTyp.
Note: the thread that opens the device must also disconnect it!

Call: FT_HANDLE hFt Handle of the USB device
Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)

Knobloch KeLib for Windows

 Page 10 of 44 pages

4.1.10 FT_HANDLE OpenFtCommDevice(DWORD dwPort,
 DWORD dwTyp,
 DWORD dwZyklus,
 DWORD *pdwError)
USB: no
COM: yes
This routine opens a connection for the specified COM channel (COM1…COM4) and
returns a handle to it. Depending upon the specified device type, the interface will
automatically be set to 9600 or 38400 baud.

The value in the variable “dwZyklus” defines query behavior and is interface-specific:

FT_INTELLIGENT_IF:
The value specifies after how many normal “input queries” both of the analog inputs EX and EY are
prompted at the Intelligent Interface. Default is “FT_ANALOG_CYCLE.”

FT_ROBO_IF_COM
With slow computing, it is possible that the interfaces can no longer be queried in the required time during a
large data arrival. For this reason, one can specify via this parameter if certain rarely used values get
passed.
0 = This corresponds to the default query (for slower computers). The analog values A1 and AV of
 I/O extensions 1..3 will not be queried.
>0 = The analog values A1 and AV of I/O extensions 1..3 will be queried.
Note:
This functionality is integrated only as of Robo interface firmware 1.45.0.3 and FtLib version 0.41.

In the event of an error during connection establishment, the error code will be saved in a
DWORD variable to which the pointer “pdwError” will point (NULL=saving not desired).

The type indication is important to the effect that the correct query codes are worked with
in the communication thread. The parameter
“FT_INTELLIGENT_IF_SLAVE” causes the extension module to be handled like a SLAVE-
1 with the communication thread.

The connection is disconnected again with the function “CloseAllFtDevices()” and
“CloseFtDevice().”

Call: DWORD dwPort PORT_COM1…PORT_COM4
 DWORD dwTyp Type of the connected interface

 FT_INTELLIGENT_IF Intelligent Interface (9600 bps)
 FT_INTELLIGENT_IF_SLAVE Intelligent Interface with extension module (9600)
 FT_ROBO_IF_IIM Robo interface in Intelligent If mode (9600)
 FT_ROBO_IF_COM Robo interface on the COM port (38400)

 DWORD dwZyklus (only with Intelligent Interface, e.g.:
 FT_ANALOG_CYCLE)
 DWORD *pdwError Pointer to an error variable
 Constant values: (see FtLib.h)

Return: Handle to the device (NULL = error).
 *pdwError then contains an error code (see FtLib.h)

Knobloch KeLib for Windows

 Page 11 of 44 pages

4.1.11 DWORD SetFtDeviceCommMode (FT_HANDLE hFt, DWORD dwMode,
 DWORD dwParameter,
 USHORT *puiValue)
USB: yes
COM: no
This routine sets the operating mode of the serial interface in the interface. After activation,
the interface will be in normal operation. In this operating mode, the interface can be
operated in online mode.
In “message mode,” messages from one interface can be sent to another via the serial
interface. An X cable (crossed sending and receiving path) is required for this.

The operating mode that is set remains in place until another operating mode is set with
this function. By pressing the “Port” pushbutton on the interface, the IF_COM_ONLINE

operation mode is set again if the interface is in AutoScan mode.

The currently set state can be queried via “IF_COM_PARAMETER.” The result will be
saved in the variables pointed to by “puiValue” if, during the call, the value of “puiValue” is
not NULL.

Mode = IF_COM_ONLINE: Set default mode
 The interface will be set to the default mode
 (parameters: 38400,n,8,1).

Mode = IF_COM_MESSAGE: Message notification via serial
 interface

Mode = IF_COM_PARAMETER Select operating mode
 *puiValue (low byte) = set mode

Call: FT_HANDLE hFt Handle of the USB device
 DWORD dwMode Operating mode of the serial interface:
 IF_COM_ONLINE 0x01: Online mode (38400,n,8,1)
 IF_COM_MESSAGE 0x03: Message mode (38400,n,8,1)
 IF_COM_PARAMETER 0x05: do not change anything, only query current status
 and save in *puiValue
 USHORT puiValue Pointer to a USHORT variable (NULL, if
 not desired)
 Here, the result is saved with

 low byte = current operating mode (see dwMode)

Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)

Knobloch KeLib for Windows

 Page 12 of 44 pages

4.1.12 DWORD CloseAllFtDevices ()
USB: yes
COM: yes
This routine disconnects all connections for all possible devices.

Call: ---
Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)

4.1.13 DWORD CloseFtDevice (FT_HANDLE hFt)
USB: yes
COM: yes
This routine disconnects all connections for the specified device. If the communication
thread is still running, it will be stopped.
Note: the thread that opens the device must also disconnect it!

Call: FT_HANDLE hFt device handle
Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)

4.1.14 DWORD GetFtDeviceTyp (FT_HANDLE hFt)
USB: yes
COM: yes
This routine returns the type of the connected device for the specified device handle.
Note: This data is read by InitFtUsbDeviceList() from the device and saved, or it is set by
OpenFtCommDevice().

Call: FT_HANDLE hFt device handle
Return: DWORD device type
 NO_FT_DEVICE no device is connected / unknown
 FT_INTELLIGENT_IF Intelligent Interface (serial)
 FT_INTELLIGENT_IF_SLAVE Intelligent Interface with extension (serial)
 FT_ROBO_IF_IIM FT-Robo interface
 in Intelligent Interface mode (serial)
 FT_ROBO_IF_USB Robo interface at the USB port
 FT_ROBO_IF_COM Robo interface at the COM port
 otherwise error code
 (if value > FT_MAX_TYP_NUMBER,
 see FtLib.h)

Knobloch KeLib for Windows

 Page 13 of 44 pages

4.1.15 LPCSTR GetFtSerialNrStrg (FT_HANDLE hFt)
USB: yes
COM: yes
This routine returns a pointer to the string with the current serial number in ASCII format
with which the device is registered in the computer.

Note: This data is read from the device by InitFtUsbDeviceList() or OpenFtCommDevice()
and saved. If a product is not supported by any serial numbers (e.g., Intelligent Interface),
a serial number of “1” is written to the string.

Call: FT_HANDLE hFt device handle
Return: LPCSTR Pointer to string
 if pointer = NULL, then error
 (Area opened, correct DevNr?)

4.1.16 DWORD GetFtSerialNr (FT_HANDLE hFt)
USB: yes
COM: yes
This routine returns the current serial number as a long integer (DWORD) with which the
device is registered in the computer. “0” is returned with an error since this serial number
does not exist.

Note: This data is read from the device by InitFtUsbDeviceList() or OpenFtCommDevice()
and saved. If a product is not supported by any serial numbers (e.g., Intelligent Interface),
a serial number of “1” is set.

Call: FT_HANDLE hFt device handle
Return: DWORD Serial number of the device
 if “0” then error
 (Area opened, correct DevNr?)

4.1.17 LPCSTR GetFtFirmwareStrg (FT_HANDLE hFt)
USB: yes
COM: yes
This routine returns a pointer to the string with the current interface firmware in ASCII
format.
Note: This data is read from the device by InitFtUsbDeviceList() or OpenFtCommDevice()
and saved.

Call: FT_HANDLE hFt device handle
Return: LPCSTR Pointer to string
 if pointer = NULL, then error
 (Area opened, correct DevNr?)

Knobloch KeLib for Windows

 Page 14 of 44 pages

4.1.18 DWORD GetFtFirmware (FT_HANDLE hFt)
USB: yes
COM: yes
This routine returns the version number of the firmware of the connected device as an
integer (DWORD). “0” is returned with an error since this firmware version does not exist.
Note: This data is read from the device by InitFtUsbDeviceList() or OpenFtCommDevice()
and saved.

Call: FT_HANDLE hFt device handle
Return: DWORD Firmware version of the device in format
 3.2.1.0 (3=high byte, 0=low byte)
 if value = “0” then error
 (Area opened, correct DevNr?)

4.1.19 LPCSTR GetFtManufacturerStrg (FT_HANDLE hFt)
USB: yes
COM: yes
This routine returns a pointer to the manufacturer string in ASCII format.
Note: This data is read from the device by InitFtUsbDeviceList() or OpenFtCommDevice()
and saved.

Call: FT_HANDLE hFt device handle
Return: LPCSTR Pointer to string
 if pointer = NULL, then error
 (Area opened, correct DevNr?)

4.1.20 LPCSTR GetFtShortNameStrg (UCHAR ucDevNr)
USB: yes
COM: yes
This routine returns a pointer to the short name string of the device in ASCII format.
Note: This data is read from the device by InitFtUsbDeviceList() or OpenFtCommDevice()
and saved.

Call: FT_HANDLE hFt device handle
Return: LPCSTR Pointer to string
 if pointer = NULL, then error
 (Area opened, correct DevNr?)

Knobloch KeLib for Windows

 Page 15 of 44 pages

4.1.21 LPCSTR GetFtLongNameStrg (FT_HANDLE hFt)
USB: yes
COM: yes
This routine returns a pointer to the long name string of the device in ASCII format.
Note: This data is read from the device by InitFtUsbDeviceList() or OpenFtCommDevice()
and saved.

Call: FT_HANDLE hFt device handle
Return: LPCSTR Pointer to string
 if pointer = NULL, then error
 (Area opened, correct DevNr?)

4.1.22 LPCSTR GetFtLibErrorString (DWORD dwErrorCode, DWORD dwTyp)
USB: yes
COM: yes
This routine returns a pointer to a string that describes the error code assigned in
dwErrorCode. During the call, it can be specified in dwTyp whether the error constant is
delivered as a string or as an error description in English.

Call:
 DWORD dwErrorCode Error code
 DWORD dwTyp Type of returned string
 0 = constant as a string
 1 = error text in English
Return: LPCSTR Pointer to string

4.1.23 DWORD GetFtDeviceSetting (FT_HANDLE hFt, FT_SETTING *pSet)
USB: yes
COM: yes
This routine writes the current interface data of the selected device in the struct addressed
by the pointer pSet. The FT_SETTING struct is defined in the header file ftlib.h (only the
variables identified with RW can be changed with the function SetFtDeviceSetting()).

Call: FT_HANDLE hFt device handle
 FT_SETTING* pointer to an FT_SETTING struct

Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)
 current error codes:
 FTLIB_ERR_INVALID_PARAM pointer *pSet is NULL

Knobloch KeLib for Windows

 Page 16 of 44 pages

4.1.24 DWORD SetFtDeviceSetting (FT_HANDLE hFt, FT_SETTING *pSet)
USB: yes
COM: yes
This routine writes the interface data into the desired device from the struct addressed by
the pointer pSet. The FT_SETTING struct is defined in the header file ftlib.h (only the
variables identified with RW can be changed with this function).

Call: FT_HANDLE hFt device handle
 FT_SETTING* pointer to an FT_SETTING struct
 If the passed value is NULL,
 no struct will be used. Functions not
 utilized within the struct
 must be deactivated with a
 NULL pointer.
Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)
 current error codes:
 FTLIB_ERR_INVALID_PARAM pointer *pSet is NULL

Knobloch KeLib for Windows

 Page 17 of 44 pages

4.1.25 DWORD SetFtDistanceSensorMode (FT_HANDLE hFt,
 DWORD dwMode, DWORD dwTol1,
 DWORD dwTol2, DWORD dwLevel1,
 DWORD dwLevel2,
 DWORD dwRepeat1,
 DWORD dwRepeat2)
USB: yes
COM: yes
This routine initializes the D1/D2 input on the interface to the connection on the
fischertechnik gap sensors or for the measurement of voltage ranges of 0-10 volts.

These parameters can also be set with the function SetDeviceSetting().

Import note:
Since the operating mode of the D1 / D2 inputs can be set by means of software, we recommend that no
voltage be supplied “directly” to these connections in order to avoid damage to the interface during software
errors. Since the inputs are highly resistive, a resistance of approximately 200 Ohm – 470 Ohm should be
directly connected to the D1 / D2 socket (series connection). We recommend to connect the voltage range to
be measured “behind” it.

Call: FT_HANDLE hFt device handle
 DWORD dwMode Operating mode of the connections:
 IF_DS_INPUT_VOLTAGE =
 Inputs measure voltage range
 IF_DS_INPUT_ULTRASONIC =
 Inputs for ft Ultrasonic sensors

The following parameters are dependent upon the set operating mode.
For dwMode = IF_DS_INPUT_DISTANCE:
 DWORD dwTol1 Range of tolerance D1 (recommended: 20)
 DWORD dwTol2 Range of tolerance D2 (recommended: 20)
 DWORD dwLevel1 Threshold D1
 DWORD dwLevel2 Threshold D2
 DWORD dwRepeat1 Repetition value D1 (recommended: 3)
 DWORD dwRepeat2 Repetition value D2 (recommended: 3)
 The gap sensor works with infrared light and can thus be disturbed by outside influences
 (e.g., IR hand transmitters). In order to eliminate these disturbances, it can be determined
 through specification of the repetition values how often the “identical”
 value has to be measured in order to be recognized as valid. Since the measurements can
 vary slightly from one to the next one, there exists a range of tolerance. As soon as a
 new measurement begins, you can change the following measurements within this
 “window” without it resulting in a restart of the measurements. The
 threshold designates a level for the analysis as “digital” gap sensors.
 Below the threshold a logical “0” is reported; above it, a “1.”
 The determined states of the firmware in the
 locations “base+0x0C” (digital) and “base+0x1C / base+0x1E” (analog) are saved in the transfer
 area.

Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)

Knobloch KeLib for Windows

 Page 18 of 44 pages

4.2 Function for Online Communication
The querying and routing of the outputs occurs through a “transfer area” (communication
storage region). This region is synchronized with the interface every 10ms after the start of
the communication thread (by means of StartFtTransferArea). It does not matter if the
interface is connected to the PC via USB, serially, or by radio. It also does not matter if it
involves an intelligent interface, a Robo interface, or an IO extension. The library
recognizes the product in question via the device handle and updates the existing inputs /
outputs of the respective interface type at the latest every 10ms. In the event that multiple
interfaces are connected to the computer, a separate thread for every connected product
can be started. The design of the transfer area can be found in this chapter’s extension.

4.2.1 DWORD StartFtTransferArea (FT_HANDLE hFt,
 NOTIFICATION_EVENTS* sNEvent)
USB: yes
COM: yes
This routine starts a communication thread that continually synchronizes the data from the
transfer area with the device. This functionality is required for online operation.

The device must be opened beforehand via the functions OpenFtUsbDevice() or
OpenFtCommDevice(). Depending upon the serial device type (indicated by
OpenFtCommDevice() during opening of the interface), only the values supported by the
interface are queried.

During the call, a pointer to a NOTIFICATION_EVENTS struct can be passed to the
function (NULL if non-existent). Pointers or handles for a callback routine and event and
message handles can be passed in this struct. When the thread receives new data from
the device (every 10ms at the latest), messages are always sent or the callback routine is
always called if their pointer values or handle values are not NULL. The invoked callback
routines may not call any FtLib functions or else a deadlock may occur.

Call: FT_HANDLE hFt device handle
 NOTIFICATION_EVENTS* Pointer to a notification struct
 If the passed value is NULL,
 no struct will be used. Functions not
 utilized within the struct
 have to be deactivated
 with a NULL pointer.
Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)

Knobloch KeLib for Windows

 Page 19 of 44 pages

4.2.2 DWORD StartFtTransferAreaWithCommunication (FT_HANDLE hFt,
 NOTIFICATION_EVENTS* sNEvent)
USB: yes
COM: yes
This routine starts a communications thread that continually synchronizes the data from
the transfer area with the device. This functionality is required for online operation. In
addition, messages are sent to the interface and received messages are retrieved. The
FtLib contains a message buffer that buffers messages received via SendFtMessage().
StartFtTransferAreaWithCommunication() ensures that these messages are sent to the
interface within the online query.

The device must be opened beforehand via the functions OpenFtUsbDevice() or
OpenFtCommDevice(). Depending upon the serial device type (indicated by
OpenFtCommDevice() during opening of the interface), only the values supported by the
interface are queried. If messages are to be sent over the serial interface, it must be set to
the operating mode IF_COM_MESSAGE beforehand via the function
SetFtDeviceCommMode().

During the call, a pointer to a NOTIFICATION_EVENTS struct can be passed to the
function (NULL if non-existent). Pointers or handles for a callback routine and event and
message handles can be passed in this struct. When the thread receives new data from
the device (every 10ms at the latest), messages are always sent or the callback routine is
always called if their pointer values or handle values do not equal NULL. The invoked
callback routines may not call any FtLib functions since otherwise a deadlock may occur.

If a message is received by the interface during the online query, the address of the
callback function saved in the variable “CallbackMessage” is retrieved and a pointer to the
message is passed. It is then the responsibility of the programmer to buffer this message
for the main program as quickly as possible in order to not delay the execution time of the
online query.

Call: FT_HANDLE hFt device handle
 NOTIFICATION_EVENTS* pointer to a notification struct
 If the passed value is NULL,
 no struct will be used. Functions not
 utilized within the struct
 have to be deactivated
 through a NULL pointer.
Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)

Knobloch KeLib for Windows

 Page 20 of 44 pages

4.2.3 DWORD StopFtTransferArea (FT_HANDLE hFt)
USB: yes
COM: yes
This routine stops the communications thread of the desired device.

Call: FT_HANDLE hFt device handle
Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)

4.2.4 FT_TRANSFER_AREA* GetFtTransferAreaAddress (FT_HANDLE hFt)
USB: yes
COM: yes
This routine returns a pointer to the address of the transfer area.

Call: FT_HANDLE hFt device handle
Return: FT_TRANSFER_AREA* Pointer to struct
 if NULL, then error

4.2.5 DWORD IsFtTransferActiv (FT_HANDLE hFt)
USB: yes
COM: yes
This routine checks if a communication thread is active in the specified device.

Call: FT_HANDLE hFt device handle
Return:
FTLIB_ERR_THREAD_IS_RUNNING if a thread is running
FTLIB_ERR_THREAD_NOT_RUNNING if no thread is running
 An error code can also be returned
 if necessary.
 (see FtLib.h)

4.2.6 DWORD ResetFtTransfer (FT_HANDLE hFt)
USB: yes
COM: yes
This routine deletes all outputs on the specified device as well as on all connected I/O
extensions (or Intelligent Interfaces and extension modules) provided that no
communication thread is running.

Call: FT_HANDLE hFt device handle
Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)

Knobloch KeLib for Windows

 Page 21 of 44 pages

4.3 Function for Message Processing
Multiple Robo interfaces can exchange messages with one another via the RS232
interface and the radio interface. The messages consist strictly of a 16-bit message ID and
a 16-bit value.

The communication takes place on radio channels (frequencies). A maximum of eight
radio interfaces can exchange messages on the same radio channel. Every module
thereby has its own “ID” number (RoboPro: “call signal”) that can be set within the range
1..8. The PC module always has ID number “0.” Additionally, messages can also be sent
to the serial port of the interface and be received by it.

Every radio channel is divided into 256 logical subchannels that are used to structure the
communication. A message is thereby always distributed among all participants
(“broadcasting”). Every message consists of five data bytes:
 SubId Number of the subchannel (1 byte)
 Message Message data (4 bytes)
 B1:B0: Message ID (low word)
 B3:B2: Message (high word)
An acknowledgement is not sent to the “sender” as to whether or not the message was
received.

Communication is controlled by the PC module that serves as a message router.

In order to be able to use message processing (message system) in online mode, the
interface query must be started with StartFtTransferAreaWithCommunication(). The
system is designed so that approximately every 10ms two messages are transmitted to the
interface and received messages are retrieved.

4.3.1 Serial Messages
In online mode, messages can also be sent and received via the serial interface. For this
purpose, the interface operating mode in the interface must be changed with the function
“SetFtDeviceCommMode().” The changed operating mode is then recognizable by the
continuous illumination of the COM light-emitting diode on the interface. By pressing the
port pushbutton, the operating mode is restored; naturally, this can also occur via the
software. So it is possible to exchange messages between two Robo interfaces via the
serial interface. The connection cable required for this (“X cable” with crossed sending and
receiving paths) can be ordered via the fischertechnik Component Part Service.

4.3.2 FtLib Functions

FtLib offers the function “SendFtMessage ()” for data transfer. For sending, a physical
channel can be selected via a hardware ID. In the event that a second interface or radio
interface are not available, one can send the message “to oneself.” One can send the
message to the serial interface or let the message router broadcast it over radio (RF) to
other modules.

Knobloch KeLib for Windows

 Page 22 of 44 pages

4.3.3 Message Reception
As soon as the interface receives a message, it invokes a callback routine and passes it a
pointer to the received message. The address of the callback routine must be specified at
the start of the transfer. We recommend that this callback routine copy the message into
its own buffer and that it be processed by the main program at a later time in order not to
“prolong” the thread routine for too long.

4.3.4 DWORD SendFtMessage (FT_HANDLE hFt, BYTE bHwId, BYTE bSubId,
 DWORD dwMessage, DWORD dwWaitTime
 DWORD dwOption)
USB: yes
COM: yes
This routine writes a message to the internal buffer. A physical channel is selected via the
parameter bHwId; via the parameter bSubId, this channel can be partitioned into logical
subchannels. The actual message consists of a 16-bit message ID in the low word and a
16-bit message value in the high word of the variable dwMessage.
Normally this function writes the delivered message to the internal message buffer and
immediately returns. However, in the event that the internal buffer is full, a waiting time in
“ms” can be specified with the parameter dwWaitTime. If the message cannot be written to
the buffer in the specified time, this function will be terminated with an error message. If
dwWaitTime=0, there is no wait time. If the buffer is full, this function returns immediately.

The message system requires approximately 5ms for the dissemination of a message.
Since this function could be called a significant number of times, particularly within loops,
the number of messages to be sent can be optimized via the parameter “dwOption.” This
can prevent the same message from being sent multiple times.

If messages are also to be sent to the serial port of the interface (bHwId = MSG_HWID_SER),
the operating mode IF_COM_MESSAGE must be activated with the function
“SetFtDeviceCommMode()” before the start of the transfer thread.

Knobloch KeLib for Windows

 Page 23 of 44 pages

Call: FT_HANDLE hFt device handle
 BYTE bHwId Hardware ID

MSG_HWID_SELF (0x00): copied directly into its own receive buffer
MSG_HWID_SER (0x01): Sent via interface RS232
MSG_HWID_RF (0x02): Via radio only to other modules
MSG_HWID_RF_SELF (0x03): Via radio also to itself

 BYTE bSubId Logical channels, IDs 0…219 are allowed.
 The values 220 to 255
 are reserved for internal tasks.
 DWORD dwMessage Low word: 16-bit message ID
 High word: 16-bit message
 DWORD dwWaitTime In the event that the internal buffer is full,
 this parameter can specify (in ms)
 how long the wait time is until
 the function returns.
 DWORD dwOption Send options

MSG_SEND_NORMAL (0): The message is written directly to the
 sending buffer.
MSG_SEND_OTHER_THAN_LAST (1): The message will not be sent if
 an identical message (bHwId, bSubId, dwMessage)
 exists at the end of the buffer. If the buffer is empty or
 if another message exists at the end of the buffer,
 the message will be sent.
MSG_SEND_IF_NOT_PRESENT (2): The message will not be sent if an identical message
(bHwId, bSubId, dwMessage)
 exists anywhere in the buffer. If the buffer is empty,
 the message will be sent.

Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)
 current error codes:
 FTLIB_ERR_MSG_BUFFER_FULL_TIMEOUT Buffer is full, message could not
 be sent in the specified
 time

Knobloch KeLib for Windows

 Page 24 of 44 pages

4.3.5 DWORD ClearFtMessageBuffer (FT_HANDLE hFt)
USB: yes
COM: yes
This routine deletes the existing messages for the specified device that still exist in the
internal message buffer.

Call: FT_HANDLE hFt device handle
Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)

Knobloch KeLib for Windows

 Page 25 of 44 pages

4.4 Function for Data Downloading / Program Control

4.4.1 DWORD GetFtMemoryLayout (FT_HANDLE hFt,
 BYTE * pbArray, DWORD dwSize)
USB: yes
COM: yes
This routine writes the current memory layout of the connected device in the passed array.
For the readout, no communication thread can be running.

Prior to a program download, the user program must be linked to these addresses.

Note: We reserve the right to change the memory layout with future firmware versions if
necessary.

Call: FT_HANDLE hFt device handle
 BYTE * pbArray Pointer to a byte array
 DWORD dwSize Size of the memory region in bytes

Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)
 current error codes:
 FTLIB_ERR_INVALID_PARAM Pointer *pbArray is NULL

Knobloch KeLib for Windows

 Page 26 of 44 pages

Memory layout design
 FLASH-1 Region Start – end address (20-bit: a bb cc – d ee ff)
 Byte 1: [0] cc (the start address)
 Byte 2: [1] bb (the start address)
 Byte 3: [2] 0a (the start address)
 Byte 4: [3] ff (the end address)
 Byte 5: [4] ee (the end address)
 Byte 6: [5] 0d (the end address)

 FLASH-2 Region Start – end address (20-bit: a bb cc – d ee ff)
 Byte 7: [6] cc (the start address)
 Byte 8: [7] bb (the start address)
 Byte 9: [8] 0a (the start address)
 Byte 10: [9] ff (the end address)
 Byte 11: [10] ee (the end address)
 Byte 12: [11] 0d (the end address)

 RAM Region Start – end address (20-bit: a bb cc – d ee ff)
 (usable for programs and variables, region is completely available to the
 program after the start of a flash program)
 Byte 13: [12] cc (the start address)
 Byte 14: [13] bb (the start address)
 Byte 15: [14] 0a (the start address)
 Byte 16: [15] ff (the end address)
 Byte 17: [16] ee (the end address)
 Byte 18: [17] 0d (the end address)

 Internal RAM1 Start – end address (20-bit: a bb cc – d ee ff)
 (usable for variables and stacks)
 Byte 19: [18] cc (the start address)
 Byte 20: [19] bb (the start address)
 Byte 21: [20] 0a (the start address)
 Byte 22: [21] ff (the end address)
 Byte 23: [22] ee (the end address)
 Byte 24: [23] 0d (the end address)

 Internal RAM2 Start – end address (20-bit: a bb cc – d ee ff)
 (usable for variables and stacks, bitwise addressing possible)
 Byte 25: [24] cc (the start address)
 Byte 26: [25] bb (the start address)
 Byte 27: [26] 0a (the start address)
 Byte 28: [27] ff (the end address)
 Byte 29: [28] ee (the end address)
 Byte 30: [29] 0d (the end address)

Knobloch KeLib for Windows

 Page 27 of 44 pages

4.4.2 DWORD DownloadFtProgram (FT_HANDLE hFt, DWORD dwMemBlock,
 BYTE* pbArray, DWORD dwSize,
 DWORD dwParameter, BYTE *pbName,
 DWORD dwNameLen)
USB: yes
COM: yes
This routine writes the passed program to the desired memory region (MemBlock) of the
interface. The program lasts a few seconds, depending on memory size.
It can be specified in the variable dwParameter whether or not the program should be
automatically started during activation. However, this only works with programs for the
“Flash1” memory region. With all other memory regions the specification will be ignored.

During the call, a pointer can be passed to a string and its length (in number of bytes; thus,
“\0” at the end of the “string” is not required). This string will be saved as the program
name in the same memory block. Since a check of the string for “\0” does not occur, binary
numbers can also be saved. In the event that the pointer “pbName” is “NULL” during
invocation or if dwNameLen has a value of “0,” no name will be saved. The function
“GetFtProgramName()” then returns a string that contains a space character (0x20) in the
first byte and that contains “0” for the remaining characters.

Import note:
If you use this function, you must know “what” you are doing! When the program is started,
no more security controls occur! Thus, it is possible to generate hardware damage through
reprogramming the hardware register in the processor!!! The manufacturer undertakes no
guarantee services if an interface defect occurs through incorrect programs!

If the program is provided with the label “Autostart,” the Autostart can be skipped by
pressing the “Prog” pushbutton during activation. The pushbutton must be pressed at the
latest during the LED test. As soon as the LEDs of the USB / COM interfaces display
normal operation, the pushbutton may be released.

Note: Erasing the flash memory can take up to 15 seconds for every block! This must be
taken into consideration with timeout monitoring. In addition, the time for the transfer and
storage of the data in the interface must be added.
Serial default values:
1 k data transfer in the flash < 1 second
128k data transfer in the flash circa 50 seconds

USB default values:
1 k data transfer in the flash < 1 second
128k data transfer in the flash circa 8 seconds

Knobloch KeLib for Windows

 Page 28 of 44 pages

Call: DWORD DownloadFtProgram (FT_HANDLE hFt, DWORD dwMemBlock,
 BYTE* pbArray, DWORD dwSize,
 DWORD dwParameter, BYTE *pbName,
 DWORD dwNameLen)

FT_HANDLE hFt device handle
 DWORD dwMemBlock Number of the memory region
 0 = Flash1
 1 = Flash2
 2 = RAM
 BYTE * pbArray Pointer to a byte array
 DWORD dwSize Number of the byte to be programmed
 DWORD dwParameter Parameter:
 0 = normal
 1 = Autostart of the program
 BYTE * pbName Pointer to a byte array with the
 program name (max. 80 characters)
 “NULL” = do not store name
 DWORD dwNameLen Length of the program name in bytes
 0 = do not store name
Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)
 current error codes:
 FTLIB_ERR_SUCCESS Program saved
 FTLIB_INFO_PROGRAM_0_IS_RUNNING Flash-1 program is running
 FTLIB_INFO_PROGRAM_1_IS_RUNNING Flash-2 program is running
 FTLIB_INFO_PROGRAM_2_IS_RUNNING RAM program is running

4.4.3 DWORD StartFtProgram (FT_HANDLE hFt, DWORD dwMemBlock)
USB: yes
COM: yes
This routine starts the desired program (0..2).

Call: FT_HANDLE hFt device handle
 DWORD dwMemBlock Number of the memory region
 whose program is to be started
Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)
 current error codes:
 FTLIB_ERR_SUCCESS Program started
 FTLIB_INFO_PROGRAM_0_IS_RUNNING Flash-1 program is running
 FTLIB_INFO_PROGRAM_1_IS_RUNNING Flash-2 program is running
 FTLIB_INFO_PROGRAM_2_IS_RUNNING RAM program is running
 FTLIB_ERR_IF_NO_PROGRAM No program saved

Knobloch KeLib for Windows

 Page 29 of 44 pages

4.4.4 DWORD StopFtProgram (FT_HANDLE hFt)
USB: yes
COM: yes
This routine stops the currently running program.

Call: FT_HANDLE hFt device handle
Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)
 current error codes:
 FTLIB_ERR_SUCCESS Program was terminated
 FTLIB_ERR_IF_NO_PROGRAM_IS_RUNNING

4.4.5 DWORD DeleteFtProgram (FT_HANDLE hFt, DWORD dwMemBlock)
USB: yes
COM: yes
This routine deletes the specified program.
Note: Erasing the flash memory can take up to 15 seconds for every block! This must be
taken into consideration with timeout monitoring.
No check occurs as to whether the block contains a program. It will be deleted in either
case!

Call: FT_HANDLE hFt device handle
 DWORD dwMemBlock Number of the memory region
 whose program is to be deleted
Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)
 current error codes:
 FTLIB_ERR_SUCCESS Program was deleted

Knobloch KeLib for Windows

 Page 30 of 44 pages

4.4.6 DWORD SetFtProgramActiv (FT_HANDLE hFt, DWORD dwMemBlock)
USB: yes
COM: yes
This routine activates the specified program. Thus, the program LEDs are activated
without starting the program. It is also possible to deactivate the program LEDs with this.

Call: FT_HANDLE hFt device handle
 DWORD dwMemBlock Number of the memory region
 that is to be “activated.”
 The LEDs are turned off with “-1.”
Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)
 current error codes:
 FTLIB_ERR_SUCCESS Program started
 FTLIB_INFO_PROGRAM_0_IS_RUNNING Flash-1 program is running
 FTLIB_INFO_PROGRAM_1_IS_RUNNING Flash-2 program is running
 FTLIB_INFO_PROGRAM_2_IS_RUNNING RAM program is running
 FTLIB_ERR_IF_NO_PROGRAM No program saved
 FTLIB_ERR_DOWNLOAD_CRC CRC error
 FTLIB_ERR_POWER_TOO_LOW Voltage on IF too low

4.4.7 DWORD GetFtProgramName (FT_HANDLE hFt, DWORD dwMemBlock,
 DWORD dwSize, LPVOID pName)
USB: yes
COM: yes
This routine reads the name of the specified program. A pointer to a correspondingly large
data block into which the character string will be copied must be passed with the call.

Tip:
With this function it is also possible to check if a program is saved in a specified memory
region. For the save, it does not matter whether or not a name was given. If no program is
saved, the error code FTLIB_ERR_IF_NO_PROGRAM is returned.

Call: FT_HANDLE hFt device handle
 DWORD dwMemBlock Number of the memory region
 DWORD dwSize Size of the memory (at least 80 characters)
 LPCSTR pName* Pointer to the memory region for
 Prog.Name
Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)
 current error codes:
 FTLIB_ERR_SUCCESS Program started
 FTLIB_INFO_PROGRAM_0_IS_RUNNING Flash-1 program is running
 FTLIB_INFO_PROGRAM_1_IS_RUNNING Flash-2 program is running
 FTLIB_INFO_PROGRAM_2_IS_RUNNING RAM program is running
 FTLIB_ERR_IF_NO_PROGRAM No program saved

Knobloch KeLib for Windows

 Page 31 of 44 pages

4.4.8 DWORD GetFtMemoryData (FT_HANDLE hFt,
 BYTE * pbArray,
 DWORD dwSize,
 DWORD dwAddress)
USB: yes
COM: yes
This routine reads 64 data bytes from the interface memory beginning with the address
specified in dwAddress and writes the data to the array to which pbArray points. The array
must be at least 64 bytes in size (dwSize). Only the memory regions from 0x00400 to
0xDFFFF can be queried. For memory regions outside of this region, “00” is returned.

Note: This program also works with a running program (“active” mode).
The reading of data via the serial interface is only possible if no communication thread is
running. Please bear in mind that the communication region in the interface beginning with
address 0x400 is only used for running programs (active mode) in the interface. In online
mode (communication thread), this region is deactivated.

Call: FT_HANDLE hFt device handle
 BYTE * pbArray Pointer to a byte array
 DWORD dwSize Size of the byte array
 DWORD dwAddress Address in the interface

Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)
 current error codes:
 FTLIB_ERR_SUCCESS Data has been read
 FTLIB_ERR_THREAD_IS_RUNNING Only COM: communication thread is running
 FTLIB_ERR_INVALID_PARAM Pointer pbArray is NULL

Knobloch KeLib for Windows

 Page 32 of 44 pages

4.4.9 DWORD WriteFtMemoryData (FT_HANDLE hFt,
 DWORD dwData,
 DWORD dwAddress)
USB: yes
COM: yes
This routine writes a data byte in the memory of the interface beginning with the address
specified in dwAddress. One can only write to the memory regions from 0x00400 to
0x7FFFF. After the writing, a verify is executed.

Note: This program also works with a running program (“active” mode).
The writing of data via the serial interface is only possible if no communication thread is
running. Please bear in mind that the communication region in the interface beginning with
address 0x400 is only used for running programs (active mode) in the interface. In online
mode (communications thread), this region is deactivated.

Call: FT_HANDLE hFt device handle
 DWORD dwData Data byte to be written to
 DWORD dwAddress Address in the interface

Return: Error code
 FTLIB_ERR_SUCCESS no error
 otherwise an error code (see FtLib.h)

Knobloch KeLib for Windows

 Page 33 of 44 pages

5 Sequence of USB Functionality for Online Communication

With application start:
 InitFtLib();

Determine which devices are connected (create list):
 InitFtUsbDeviceList();

Determine the number of active devices:
 GetNumFtUsbDevice();

Get a handle to a desired device:
 GetFtUsbDeviceHandle(UCHAR ucDevNr) ;

ucDevNr = 0 … GetNumFtUsbDevice()

Determine “which” device (type of the device) is connected:
 GetFtDeviceTyp(FT_HANDLE hFt);

Open the data connection to the device:
 OpenFtUsbDevice(FT_HANDLE hFt);

Begin the communication (device <-> transfer area):
 StartFtTransferArea(FT_HANDLE hFt, NOTIFICATION_EVENTS* sNEvent);

Query the pointer to the transfer area:
 GetFtTransferAreaAddress(FT_HANDLE hFt);

 .
 (your own program)
 .

Stop the communication:
 StopFtTransferArea(FT_HANDLE hFt);

Close the data connection to the device:
 CloseFtDevice (FT_HANDLE hFt) or CloseAllFtUsbDevices()

With application termination:
 CloseFtLib();

Knobloch KeLib for Windows

 Page 34 of 44 pages

6 Transfer Area

The querying and routing of the outputs occurs through a “transfer area” (communication
storage region). This region is synchronized with the interface every 10ms after the start of
the communication thread (by means of StartFtTransferArea). It does not matter if the
interface is connected to the PC via USB, serially, or by radio. It also does not matter if it
involves an intelligent interface, a Robo interface, or an IO extension. The library
recognizes the product in question via the device handle and updates the existing inputs /
outputs of the respective interface type at the latest every 10ms. In the event that multiple
interfaces are connected to the computer, a separate thread for every connected product
can be started. The design of the transfer area can be found in this chapter’s extension.

Note:
With an Intelligent Interface, the data of the extension module is saved to memory
locations of extension module (expansion module) “1.”

6.1 Memory Region Design
After the transfer thread has been started by means of StartFtTransferArea(), the base
address for the memory region can be queried with the function
GetFtTransferAreaAddress().

6.1.1 Memory Layout of the Communication Region
Digital inputs of the base module

 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Base+0x00: | E8 | E7 | E6 | E5 | E4 | E3 | E2 | E1 |

Digital inputs of expansion modules 1-3
Base+0x01: | E16| E15| E14| E13| E12| E11| E10| E9 |

Base+0x02: | E24| E23| E22| E21| E20| E19| E18| E17|

Base+0x03: | E32| E31| E30| E29| E28| E27| E26| E25|

Reserved (8 bytes)
Base+0x04..0x0B

Reserved (1 byte)
Base+0x0C

Reserved (1 byte)
Base+0x0D

Knobloch KeLib for Windows

 Page 35 of 44 pages

Special inputs from IR sender (motor 1-3 left/right + "1)))" and "2)))")
Base+0x0E: | 0 | 0 | 0 | C | T | T | T | T
 C = Code: 0 = Code 1 activated

 1 = Code 2 activated

 TTTT = pushbutton number 0..11

Pushbutton arrangement on the sender:
 1 8
 2 7
 3 10
 4 9
 5 11
 6

Pushbutton 1 = M3R

Pushbutton 2 = M3L

Pushbutton 3 = Rate M1

Pushbutton 4 = Rate M2

Pushbutton 5 = Rate M3

Pushbutton 6 = Code 2

Pushbutton 7 = M1BW

Pushbutton 8 = M1FW

Pushbutton 9 = M2L

Pushbutton 10 = M2R

Pushbutton 11 = Code 1
Reserved (1 byte)

Base+0x0F
Analog inputs of the base module (4x 16 bit, value range 0..1023, L:H format)

Base+0x10..0x11: AX (Master Module)

Base+0x12..0x13: AY (Master Module)

Base+0x14..0x15: A1 (Master Module)

Base+0x16..0x17: A2 (Master Module)

Base+0x18..0x19: AZ (Master Module, from SLAVE Module BUS)

Base+0x1A..0x1B: AV (Master Module supply voltage)

 in 10mV increments (* 0.01 = Volt)

Base+0x1C..0x1D: D1 (gap sensor 1)

Base+0x1E..0x1F: D2 (gap sensor 2)

Knobloch KeLib for Windows

 Page 36 of 44 pages

Analog inputs of extension modules 1-3
Base+0x20..0x21: AX (extension 1 module)

Base+0x22..0x23: AX (extension 2 module)

Base+0x24..0x25: AX (extension 3 module)

Reserved (4 bytes)
Base+0x26..0x27: DS1

Base+0x28..0x29: DS2

Reserved (2 bytes)
Base+0x2A..0x2B

Reserved (4 bytes)
Base+0x2C..0x2F

Knobloch KeLib for Windows

 Page 37 of 44 pages

16-bit timer 1..6
Base+0x30..0x31: Timer 1 ms increment

Base+0x32..0x33: Timer 10 ms increment

Base+0x34..0x35: Timer 100 ms increment

Base+0x36..0x37: Timer 1s increment

Base+0x38..0x39: Timer 10s increment

Base+0x3A..0x3B: Timer 1 min increment

Reserved (4 bytes)
Base+0x3C..0x3F

Outputs of the base module (polarity)
 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Base+0x40: |M4B |M4A |M3B |M3A |M2B |M2A |M1B |M1A |
(do not forget: set bits to Base+0xE1!)

Outputs of expansion modules 1-3 (polarity)
Base+0x41: |M8B |M8A |M7B |M7A |M6B |M6A |M5B |M5A |

Base+0x42: |M12B|M12A|M11B|M11A|M10B|M10A|M9B |M9A |

Base+0x43: |M16B|M16A|M15B|M15A|M14B|M14A|M13B|M13A|

Reserved (4 bytes)
Base+0x44..0x47

Outputs of the base module (activate energy-saving mode)
 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Base+0x48: | 0 | 0 | 0 | 0 | M4 | M3 | M2 | M1 |

 INIT | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |

 1 = energy-saving mode activated
 meaning: if both outputs of a motor are at "0,"
 the output in the interface will be "turned off"
 so that no current flows.

Outputs of expansion modules 1-3 (deactivate energy-saving mode)
Base+0x49: | 0 | 0 | 0 | 0 | M8 | M7 | M6 | M5 |

Base+0x4A: | 0 | 0 | 0 | 0 | M12| M11| M10| M9 |

Base+0x4B: | 0 | 0 | 0 | 0 | M16| M15| M14| M13|

 INIT | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |

 1 = energy-saving mode activated

Knobloch KeLib for Windows

 Page 38 of 44 pages

Reserved (4 bytes)
Base+0x4C..0x4F

Outputs of the base module (PWM values, value range 0…7)
Base+0x50: M1A

Base+0x51: M1B

Base+0x52: M2A

Base+0x53: M2B

Base+0x54: M3A

Base+0x55: M3B

Base+0x56: M4A

Base+0x57: M4B

Outputs of the IO-Ext1 module (PWM values, value range 0…7)
Base+0x58: M5A

Base+0x59: M5B

Base+0x5A: M6A

Base+0x5B: M6B

Base+0x5C: M7A

Base+0x5D: M7B

Base+0x5E: M8A

Base+0x5F: M8B

Outputs of the IO-Ext2 module (PWM values, value range 0…7)
Base+0x60: M9A

Base+0x61: M9B

Base+0x62: M10A

Base+0x63: M10B

Base+0x64: M11A

Base+0x65: M11B

Base+0x66: M12A

Base+0x67: M12B

Knobloch KeLib for Windows

 Page 39 of 44 pages

Outputs of the IO-Ext3 module (PWM values, value range 0…7)
Base+0x68: M13A

Base+0x69: M13B

Base+0x6A: M14A

Base+0x6B: M14B

Base+0x6C: M15A

Base+0x6D: M15B

Base+0x6E: M16A

Base+0x6F: M16B

Reserved (32 bytes)
Base+0x70..0x8F

Analog inputs of I/O extension 1..3 (update time 20ms)
(these are located on the right 10-pin pin strip, pin 10, series resistance of 220..470 Ohm recommended)

Base+0x90..0x91: A1 (I/O extension 1 module)

Base+0x92..0x93: A1 (I/O extension 2 module)

Base+0x94..0x95: A1 (I/O extension 3 module)

Base+0x96..0x97: AV (I/O extension 1 module supply voltage)
 in 10mV increments (* 0.01 = volt)

Base+0x98..0x99: AV (I/O extension 2 module supply voltage)
 in 10mV increments (* 0.01 = volt)

Base+0x9A..0x9B: AV (I/O extension 3 module supply voltage)
 in 10mV increments (* 0.01 = volt)

Reserved (4 bytes)

Base+0x9C..0x9F

Resistance values of analog inputs AX / AY

Base+0xA0..0xA1: AX (interface) resistor value (0..5662 Ohm)

Base+0xA2..0xA3: AY (interface) resistor value (0..5662 Ohm)

Base+0xA4..0xA5: AX (I/O extension 1 module) resistor value (0..5662)

Base+0xA6..0xA7: AX (I/O extension 2 module) resistor value (0..5662)

Base+0xA8..0xA9: AX (I/O extension 3 module) resistor value (0..5662)

Reserved (54 bytes)

Base+0xAA..0xDF
Reserved (1 byte)

Base+0xE0

Knobloch KeLib for Windows

 Page 40 of 44 pages

Options (RW)
Base+0xE1: | | | | | | | UA2| UA1|

 INIT | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

 UA1 = 1: Update outputs / PWM every 10ms
 UA2 = 1: Update outputs / PWM one time
Note: Only if UA1 or UA2 are at "1" will the
 preset motor states on the outputs be connected
 (only with download programs).

Windows only:

Base+0xE2 Windows Communication Thread <-> Windows application
 1 = thread is running, 0=thread is not running
 (byte is used only within the Windows transfer area!)

Interface only: Reserve
Base+0xE2 byte not used in the interface

Reserved
Base+0xE3..0x0xE5

Number of connected I/O extension modules on the bus (S2..S0 = 0..3)
Base+0xE6 | | | | | | S2 | S1 | S0 |

Reserved (1 byte)
Base+0xE7

Reserved (1 byte)
Base+0xE8

Reserved
Base+0XE9..0x0xEF

Change byte digital inputs

Base+0xF0: (1=inputs to the master or IO-Ext1..3 have changed)
 Windows: use InterlockedExchange() function with 0 for
 reading and writing!

Change byte analog inputs
Master: AX, AY, A1, A2, AV, AZ, D1, D2 or I/O extension 1..3 AX, AY, AV
have changed
Base+0xF1: (1=analog inputs to the master or IO-Ext1..3 have changed)
 Windows: use InterlockedExchange() function with 0 for
 reading and writing!

Change byte Ir inputs
Base+0xF2: (1=change to the IR sensor input)
 Windows: use InterlockedExchange() function with 0 for
 reading and writing!

Reserve
Base+0XF3..0x0xFF

Knobloch KeLib for Windows

 Page 41 of 44 pages

Here follow the (digital) inputs again per input stored in a 16-bit variable. If the input is
associated with “+,” this is assessed as “1.” An input that is open or connected with
“ground” is assessed as “0.”

Base+0x100..0x101 input 1 (Master Module)

Base+0x102..0x103 input 2 (Master Module)

Base+0x104..0x105 input 3 (Master Module)

Base+0x106..0x107 input 4 (Master Module)

Base+0x108..0x109 input 5 (Master Module)

Base+0x10A..0x10B input 6 (Master Module)

Base+0x10C..0x10D input 7 (Master Module)

Base+0x10E..0x10F input 8 (Master Module)

Base+0x110..0x111 input 9 (Slave1 Module)

Base+0x112..0x113 input 10 (Slave1 Module)

Base+0x114..0x115 input 11 (Slave1 Module)

Base+0x116..0x117 input 12 (Slave1 Module)

Base+0x118..0x119 input 13 (Slave1 Module)

Base+0x11A..0x11B input 14 (Slave1 Module)

Base+0x11C..0x11D input 15 (Slave1 Module)

Base+0x11E..0x11F input 16 (Slave1 Module)

Base+0x120..0x121 input 17 (Slave2 Module)

Base+0x122..0x123 input 18 (Slave2 Module)

Base+0x124..0x125 input 19 (Slave2 Module)

Base+0x126..0x127 input 20 (Slave2 Module)

Base+0x128..0x129 input 21 (Slave2 Module)

Base+0x12A..0x12B input 22 (Slave2 Module)

Base+0x12C..0x12D input 23 (Slave2 Module)

Base+0x12E..0x12F input 24 (Slave2 Module)

Base+0x130..0x131 input 25 (Slave3 Module)

Base+0x132..0x133 input 26 (Slave3 Module)

Base+0x134..0x135 input 27 (Slave3 Module)

Base+0x136..0x137 input 28 (Slave3 Module)

Base+0x138..0x139 input 29 (Slave3 Module)

Base+0x13A..0x13B input 30 (Slave3 Module)

Base+0x13C..0x13D input 31 (Slave3 Module)

Base+0x13E..0x13F input 32 (Slave3 Module)

Base+0x140..0x141 gap sensor D1 (Master Module)

Base+0x142..0x143 gap sensor D2 (Master Module)
Reserved (12 bytes)

Base+0x140..0x14F

Knobloch KeLib for Windows

 Page 42 of 44 pages

The IR pushbuttons are presented as individual inputs in a 16-bit variable per pushbutton
(1=pushbutton pressed). A pressed pushbutton is indicated with a “1” both in the
“undecoded” region as well as in the “decoded” region.

Base+0x150..0x151 IR pushbutton 1 (M3R)

Base+0x152..0x153 IR pushbutton 2 (M3L)

Base+0x154..0x155 IR pushbutton 3 (M1)

Base+0x156..0x157 IR pushbutton 4 (M2)

Base+0x158..0x159 IR pushbutton 5 (M3)

Base+0x15A..0x15B IR pushbutton 6 (code2)

Base+0x15C..0x15D IR pushbutton 7 (M1BW)

Base+0x15E..0x15F IR pushbutton 8 (M1FW)

Base+0x160..0x161 IR pushbutton 9 (M2LE)

Base+0x162..0x163 IR pushbutton 10 (M2RI)

Base+0x164..0x165 IR pushbutton 11 (code1)

Reserved (10 bytes)

Base+0x166..0x16F

Base+0x170..0x171 IR pushbutton 1 (M3R) code1

Base+0x172..0x173 IR pushbutton 2 (M3L) code1

Base+0x174..0x175 IR pushbutton 3 (M1) code1

Base+0x176..0x177 IR pushbutton 4 (M2) code1

Base+0x178..0x179 IR pushbutton 5 (M3) code1

Base+0x17A..0x17B reserved

Base+0x17C..0x17D IR pushbutton 7 (M1BW) code1

Base+0x17E..0x17F IR pushbutton 8 (M1FW) code1

Base+0x180..0x181 IR pushbutton 9 (M2LE) code1

Base+0x182..0x183 IR pushbutton 10 (M2RI) code1

Base+0x184..0x185 reserved
Reserved (10 bytes)

Base+0x166..0x18F

Knobloch KeLib for Windows

 Page 43 of 44 pages

Base+0x190..0x191 IR pushbutton 1 (M3R) code2

Base+0x192..0x193 IR pushbutton 2 (M3L) code2

Base+0x194..0x195 IR pushbutton 3 (M1) code2

Base+0x196..0x197 IR pushbutton 4 (M2) code2

Base+0x198..0x199 IR pushbutton 5 (M3) code2

Base+0x19A..0x19B reserved

Base+0x19C..0x19D IR pushbutton 7 (M1BW) code2

Base+0x19E..0x19F IR pushbutton 8 (M1FW) code2

Base+0x1A0..0x1A1 IR pushbutton 9 (M2LE) code2

Base+0x1A2..0x1A3 IR pushbutton 10 (M2RI) code2

Base+0x1A4..0x1A5 reserved
Reserved (10 bytes)

Base+0x1A6..0x1AF

RF status (only RF data link USB module)

Base+0x1B0..0x1B1: 0 = RF connection in order

 1 = (0x1B4..0x1B5) > 25, bad connection

Base+0x1B2..0x1B3: Reception quality, with <40 bad connection
 (8-bit value)

Base+0x1B4..0x1B5: Error count with RF online mode; is
 increased with faulty connection and set
 to "0" if the connection is in order.

Reserved
Base+0x1B6..0x1FF

6.1.2 Digital Inputs E1-E32
The bits for the digital inputs are set to “0” with an open input and set to “1” with an input
connected with “+.” Unavailable inputs (missing expansion modules) are set to “0.”
Additionally, all 32 inputs are again stored in a 16-bit variable per input (“1”=input active)
starting with base+0x100.

6.1.3 Special Inputs
The 11 pushbuttons of the IR radio control are special inputs. The number on the pressed
pushbutton on the IR sender as well as the information as to whether code “1” or code “2”
is activated is stored in location base+0x0E. Additionally, all pushbuttons are again stored
in 16-bit variables (the same as for the digital inputs).

6.1.4 Analog Inputs
The analog inputs are stored as 16-bit values with a value range of 0…1023.

6.1.5 16-bit Timer
The six 16-bit timers with increments of 1ms, 10ms, 100ms, 1s, 10s, and 60s are used for
specific timeout variables. No fixed relationship exists between the individual timer values,
i.e., the 10ms value is not 10 times the 1ms value, for example.

Knobloch KeLib for Windows

 Page 44 of 44 pages

6.1.6 Outputs
The outputs are controlled via a polarity bit, an energy-saving bit, and a PWM value byte.
The PWM value and the polarity bit are indicated per individual output. The energy-saving
bit is indicated per output pair. If the polarity bit is “0,” the output is set to ground; if the
polarity bit is “1,” the output is set to servicing (9V). If the energy-saving bit is “1,” an output
pair is connected with high resistance after a delay (1 sec.) if both accompanying polarity
bits are set to “0.” If the energy-saving bit is set to “0,” the associated output pair is not
connected with high resistance. The pulse width of the output is set at 8 levels via the
PWM byte, which has a value range of 0…7 (e.g., in 12.5% steps between 12.5% and
100%).

Note for download programs:
The output settings are copied to a separate data area by the firmware every 10ms if the bit
“UpdateAusgaenge” (UA1) is set to BASE+0xE1. If UA2 is set instead of UA1, then the outputs are written
only once with the next 10ms interrupt. After the outputs are set, the UA2 bit is deleted.

After the initialization of the interface (activation), all energy-saving bits are set to “1.” This
functionality is activated by default.

6.1.7 Operating Mode, Installed Enhancements
Starting with base+0x0E, information can again be found about the operating state as well
as the type of the installed module (number of I/O extensions, radio module, etc.).

7 Revision
Version 0.56: - Complete revision
 - New: SendFtMessage()
 ClearFtMessageBuffer()
 StartDtTransferAreaWithCommunication()
 SetFtDeviceCommMode()
Version 0.58: - Revision of InitFtUsbDeviceList()
Version 0.60: - Renamed GetAnzFtUsbDevice() to GetNumFtUsbDevice()
 - Renamed ClearFtMessagePuffer() to ClearFtMessageBuffer()
Version 1.61a: - Renamed FtLib from 0.60 to 1.61a
 - Support for Interface-Firmware 01.66.00.03
Version 1.70a: - Revision of SetFtDistanceSensorMode()
 - Support for Interface-Firmware 01.75.00.04

12.2008: - discontinuation FtLib development
 - Integration of FtLib inside the KeLib

KeLib V 1.74: - Support for "education line" (new functions - described only in the German edition)
KeLib V 1.75: - Support for Robo LT Controller
KeLib V 1.77: - Support for 32/64-Bit-Treiber
KeLib V 1.78: - Support for Easy-pH

